
1

Publication Chain 1.0
Admin and User Guide

How to setup and use a publication chain

Xavier Berger
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
License1. You may alter, remix, and distribute its contents as long as you give attribu-
tion to the author and share the derivative work under the same CC license.

DISCLAIMER:

The information provided on this document comes without warranty of any kind, with-
out even the implied warranty of merchantability or fitness for a particular purpose and
is distributed AS IS.

Every effort has been made to provide the information as accurate as possible. The
information may be incomplete, may contain errors or may have become out of date.
The use of this information described herein is your responsibility, and to use it in your
own environments do so at your own risk.

Abstract
This article is describing how to install and use a publication chain based on publican and serna-free
software. This article has been written using this publication chain and is used as an example of docu-
ment redaction and publication.

About the author

1 http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Admin and User Guide

2

Xavier Berger is working as Solution Architect in a telecom company. He is a specialist in Linux and
network deployment. Xavier enjoys hiking, geocaching, skiing and spending time with his family. His
web site is: http://xberger.free.fr

1. Introduction ... 2
2. Installation .. 5

2.1. Install publican and poedit .. 5
2.2. Install serna-free .. 5

3. Redaction ... 6
3.1. Creating the article's skeleton ... 6
3.2. Preparing the document structure ... 9
3.3. Writing the article ... 10

4. Publication .. 14
4.1. Rendering the document ... 14
4.2. Managing a web site .. 15

5. Translation .. 17

A. Revision History 19

1. Introduction
Publication chain

A publication chain is a technological and methodological process to product documents. The publica-
tion chain approach is to create a document model containing the data and the description of the for-
matting. The final document is generated by rendering in the desired format (pdf, html, epub...)

DocBook

DocBook is a semantics markup language for technical documentation. It was originally intended for
writing technical documents related to computer hardware and software but it can be used for any oth-
er sort of documentation.

A semantic language is describing a document and separate content from presentation. DocBook file
is storing the data XML format. The following screenshot is showing how a document described with a
semantic markup language could be represented.

http://xberger.free.fr

Introduction

3

Publican

Publican is a tool dedicated to process DocBook XML. It is a rendering engine which can generate
document in different kind of format by applying a transformation to the XML data. It will result reader
friendly documents in various format like pdf, html or ePub.

Serna

serna-free is an open source software designed to manipulate XML data in various format. DocBook
is one of these formats. serna-free provides a WYSIWYM GUI: What You See Is What You Mean
Graphical User Interface. It allows to easily edit XML documents.

Admin and User Guide

4

poedit

poedit is a software dedication to the translation. It give to the translator a graphical user interface and
shows the status of the translation of the document. We will see in the last part of this document how
to use it and provide a multi-language documentation.

About this article

This article has been written using serna-free, publican and poedit. We will see how install and
use a publication chain based on these three softwares.

Installation

5

2. Installation
In this chapter we will install the softwares composing the publication chain.

2.1. Install publican and poedit
publican is available into Ubuntu repositories. The installation of publican can be done with the fol-
lowing command:

sudo apt-get install publican libservlet2.4-java

poedit is also available into the repository and can be installed with the command:

sudo apt-get install poedit

2.2. Install serna-free
serna-freeis not available in the Ubuntu repository and not published as a deb package. We will then
use the rpm package and the software alien to install it cleanly into our system.

sudo apt-get install alien

Then download the rpm from the official repository:

wget http://downloads.sourceforge.net/project/sernafree.mirror/ser
na-free-4.4-4.4.0-20111103.i686.rpm -O serna-free.rpm

Convert the rpm into deb using alien (It could take some time)

sudo alien -dck serna-free.rpm

Install the created package using the following command:

sudo dpkg -i serna-free*.deb

Execute the post-installation script to complete the installation:

sudo sh -c 'export SERNA_EXE=serna.bin; export SERNA_TAG=serna-free-4.4; export
 INSTALL_PREFIX=/opt; /opt/serna-free-4.4/bin/serna-postin.sh'

Create a link to the program into /usr/local/bin/ to have it available in the path

cd /usr/local/bin
sudo ln -s /opt/bin/serna

Finally, add the shortcut into the desktop menu by creating the file ~/.local/share/applica-
tions/serna.desktop with the following content:

[Desktop Entry]
Name=Serna
Comment=XML WISWIYM Editor
Exec=serna

http://downloads.sourceforge.net/project/sernafree.mirror/serna-free-4.4-4.4.0-20111103.i686.rpm
http://downloads.sourceforge.net/project/sernafree.mirror/serna-free-4.4-4.4.0-20111103.i686.rpm

Admin and User Guide

6

Icon=/opt/serna-free-4.4/icons/SernaIcon32.png
Terminal=false
Type=Application
Categories=Application;Office;
StartupNotify=true

serna-free application is now available into Ubuntu → Office → Serna

3. Redaction
Now, the publication chain is ready then come the time to write a article or an book.

3.1. Creating the article's skeleton
The first action will be to create the skeleton of the document. We will take the redaction of this article
as an example.

First we will ask publican to create the skeleton of an article with the commands:

mkdir ~/Documentation
cd ~/Documentation
publican create --type=article --name "Publican and Serna" --product "Publication Chain"

--type define the type of the document. It can be article or book.

--name define the name of the document.

--product define the name of the product the document is written for.

The command creates the a directory ~/Documentation/Publican_and_Serna/ directly con-
structed from the value of the parameter --name. This directory contains the publican configuration
file ~/Documentation/Publican_and_Serna/publican.cfg and five other files into the subdi-
rectory ~/Documentation/Publican_and_Serna/en-US/. en-US is the default language of pub-
lican.

Lets have a look into these files:

~/Documentation/Publican_and_Serna/en-US/Publican_and_Serna.xml

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Template.ent">
%BOOK_ENTITIES;
]>
<article>
 <xi:include href="Article_Info.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
 <para>
 This is a test paragraph
 </para>
 <xi:include href="Revision_History.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
 <index />
</article>

The name of this file directly comes from the parameter --name of the command line. This is the root
of the document. It includes other files generated automatically like the article information at the begin-
ning and the revision history at the end, just before the index.

Creating the article's skeleton

7

In this skeleton it is proposed to write directly the article inside this file. We will see in the next chapter
how to make the document easier to edit by including sections into separate and dedicated files.

~/Documentation/Publican_and_Serna/en-US/Article_Info.xml

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE articleinfo PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Publican_and_Serna.ent">
%BOOK_ENTITIES;
]>
<articleinfo id="arti-Publication_Chain-Publican_and_Serna">
<title>Publican and Serna</title>
<subtitle>short description</subtitle>
<productname>Publication Chain</productname>
<productnumber>0.1</productnumber>
<edition>0</edition>
<pubsnumber>0</pubsnumber>
<abstract>
<para>
A short overview and summary of the book's subject and purpose, traditionally no more than
 one paragraph long. Note: the abstract will appear in the front matter of your book and will
 also be placed in the description field of the book's RPM spec file.
</para>
</abstract>
<corpauthor>
<inlinemediaobject>
<imageobject>
<imagedata fileref="Common_Content/images/title_logo.svg" format="SVG" />
</imageobject>
</inlinemediaobject>
</corpauthor>
<xi:include href="Common_Content/Legal_Notice.xml" xmlns:xi="http://www.w3.org/2001/
XInclude" />
<xi:include href="Author_Group.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
</articleinfo>

This file contains the information of the article: the title of the document, the product associated, the
versions of product and document and an abstract explaining the subject of the article. It also includes
other documents:

• The legal notice which is part of publican template.

• The list of author generated by the previous command.

~/Documentation/Publican_and_Serna/en-US/Author_Group.xml

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE authorgroup PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Publican_and_Serna.ent">
%BOOK_ENTITIES;
]>
<authorgroup>
<author>
<firstname>Dude</firstname>
<surname>McPants</surname>
<affiliation>
<orgname>Somewhere</orgname>
<orgdiv>Someone</orgdiv>
</affiliation>
<email>Dude.McPants@example.com</email>
</author>

Admin and User Guide

8

</authorgroup>

This file gather the list of the writer of the document. The content of this file is included into the article
info.

~/Documentation/Publican_and_Serna/en-US/Revision_History.xml

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE appendix PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Publican_and_Serna.ent">
%BOOK_ENTITIES;
]>
<appendix id="appe-Publican_and_Serna-Revision_History">
<title>Revision History</title>
<simpara>
<revhistory>
<revision>
<revnumber>0-0</revnumber>
<date>Fri Sep 21 2012</date>
<author>
<firstname>Dude</firstname>
<surname>McPants</surname>
<email>Dude.McPants@example.com</email>
</author>
<revdescription>
<simplelist>
<member>Initial creation of book by publican</member>
</simplelist>
</revdescription>
</revision>
</revhistory>
</simpara>
</appendix>

This file is gathering the list of revision of the article. It will be rendered as an appendix and will appear
at the end of the document (since it has been included at the end of the root file).

~/Documentation/Publican_and_Serna/en-US/Publican_and_Serna.ent

<!ENTITY PRODUCT "Publication Chain">
<!ENTITY BOOKID "Publican and Serna">
<!ENTITY YEAR "2012">
<!ENTITY HOLDER "| You need to change the HOLDER entity in the en-US/Publican_and_Serna.ent
 file |">

This file is containing the definition of entities. This file is inserted every generated files. The values de-
fined in this file can be used as parameter inside the XML document.

~/Documentation/Publican_and_Serna/publican.cfg

xml_lang: "en-US"
type: Article
brand: common

This is the configuration file used by publican during the rendering of the document and define the
type of the document (Article) and the brand (common) which will define the look and feel of the final
rendering. With Ubuntu package, only the 'common' brand is available.

Lets now render the first article with the following command:

Preparing the document structure

9

cd ~/Documentation/Publican_and_Serna
publican build --langs en-US --formats html-single

and see what has been produced in firefox

firefox tmp/en-US/html-single/index.html

We will see in detail how to use this command to generate user-friendly documentation.

3.2. Preparing the document structure
We have now to edit the files automatically generated and replace default value by real information.
This should be done directly by editing the XML file into a text editor.

Edit publican.cfg and add the following lines:

docname: Publican_and_Serna
mainfile: Publican_and_Serna

This will allow to change the title of the document without changing the name of the XML files. If these
values are not defined, publican will determine the name of the main file based on the title information
written into the information file (Article_Info.xml or Book_Info.xml).

Edit the file Article_Info.xml, Author_Group.xml, Revision_History.xml and
Publican_and_Serna.ent. Update their content with the information related to the project and au-
thors.

Now to simplify the edition of our article, we will create sections and we will include these section in-
side the document root: Publican_and_Serna.xml.

Each section is stored into a file will contain the text and formating description of a chapter.

For the redaction of this article we created the following sections:

• Introduction stored into the file Section-Introduction.xml

• Installation stored into the file Section-Installation.xml

• Redaction stored into the file Section-Redaction.xml

• Publication stored into the file Section-Publication.xml

With the following content:

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Publican_and_Serna.ent">
%BOOK_ENTITIES;
]>
<section>
 <title/>
 <para/>
</section>

This XML code is describing a section. This section is containing one empty title and one empty para-
graph.

Admin and User Guide

10

We then updated the main document Publican_and_Serna.xml to include the section in the order
we would like to see.

The root document have now the following content:

<?xml version='1.0' encoding='utf-8' ?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/
docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Publican_and_Serna.ent">
%BOOK_ENTITIES;
]>
<article>
 <xi:include href="Article_Info.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
<xi:include href="Section-Introduction.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
<xi:include href="Section-Installation.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
<xi:include href="Section-Redaction.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
<xi:include href="Section-Publication.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
<xi:include href="Section-Revision_History.xml" xmlns:xi="http://www.w3.org/2001/XInclude" />
 <!--index /-->
</article>

index has been commented out the since it is not needed for this project.

3.3. Writing the article

3.3.1. Using serna-free
The structure of our document is ready. We can start writing the article. To make this easier, we will
use serna-free. This tool allow to edit the document in a WYSIWYM way. It also does the validation
of the conformity of the document with the DocBook rules in real time. If you try to create a structure
not supported by the DocBook definition you will see an error and the operation will be canceled..

Start serna-free an open the document Section-Introduction.xml using the menu Docu-
ment → Open...

serna-free is divided into 2 main area: The Content Map / TOC on the left side and the edition area
in the right side.

Writing the article

11

The Content Map / TOC panel displays a view of the structure of the document. This is an interactive
area that allow to reorganize the data by a simple drag and drop.

The right side is displaying the text into a formatted view. This representation is not reflecting the exact
view of the final document but is giving a quick overview of how it will look.

Using these two panels will allow the edition of the document. The first thing to do is the add the title of
the section then the text of the paragraph.

In a DocBook article as well as into any XML document the formating is not done during the redaction
of the article. We do perform a description of the formating using XML elements. This is the subject of
the next chapter.

3.3.2. Docbook XML elements
This chapter is gathering some basic of DocBook element and explaining how to use them into ser-
na-free and how it is encoded into DocBook XML.

In serna-free, the contextual menu can be activated on both right and left panels. It will gives you the
access to every possibilities given during the edition of your document. When a text is selected, it is
possible to 'tag' the selected text and insert it into an XML element.

Highlighting words

A word could be highlighted using emphasis: Bold, italic, underline

To do so, select the text to highlight into the editing pane and click on the button of the tool-bar. The
document will be modified as in the screen-shot below (Bold in bold, Italic in italic and underline under-
lined):

Admin and User Guide

12

This is a graphical view of the underlaying XML which is in reality:

<para>A word could be highlighted using enphsis: <emphasis role="bold">Bold</
emphasis>, <emphasis role="italic">italic</emphasis>, <emphasis role="underline">underline</
emphasis></para>

A word could also represent a filename, an application, a command, a code, a phrase, a class-
name... There are a lot of possibility offered by the DocBook reference. To highlight a specific word or
phrase, you should select it and from the contextual menu select Wrap Info Element

Images

Image are specific object and have to be inserted as <mediaobject> or <inlinemediaobject> com-
posed by an <imageobject> composed by and <imagedata>.

The <imagedata> element contains attributes visible using the context menu Element Attributes...

The image to display is defined by the attribute fileref. You can use the little yellow folder in the
bottom left to browse the image to insert.

Writing the article

13

The underlying XML code looks like that:

 <mediaobject>
 <imageobject>
 <imagedata align="center" fileref="images/MediaObject.png"/>
 </imageobject>
 </mediaobject>

Lists

Two kinds of lists exist: <itemizedlist> and <orderedlist>. In the first list, each item is preceded by a
bullet. In the ordered list, each item is preceded by a number (incremental).

The elements <itemizedlist> and <orderedlist> represent the entry point of the list. These elements
are composed by a list of <listitem> containing the data to display a <para> like in the example bel-
low:

The underlying XML code looks like that:

 <itemizedlist>
 <listitem>
 <para>Introduction stored into the file <filename>Section-Introduction.xml</
filename></para>
 </listitem>
 <listitem>
 <para>Installation stored into the file <filename>Section-Installation.xml</
filename></para>
 </listitem>
 <listitem>
 <para>Redaction stored into the file <filename>Section-Redaction.xml</filename></
para>
 </listitem>
 <listitem>
 <para>Publication stored into the file <filename>Section-Publication.xml</filename></
para>
 </listitem>
 </itemizedlist>

In this document we only used <itemizedlist>. Creating a sub-listing can be done by inserting an
<itemizedlist> or <orderedlist> inside a <listitem>.

Program listing

Admin and User Guide

14

The element <programlisting> allow to insert pieces of code inside a document. publican as the ca-
pability to highlight the code to make it easier to read. To perform the correct highlighting, it is manda-
tory to define the language of the code. This language will be defined into the attribute language of the
element. The list of supported language is available into the following page:

• http://search.cpan.org/~szabgab/Syntax-Highlight-Engine-Kate-0.06/lib/Syntax/Highlight/En-
gine/Kate.pm#PLUGINS

The first column list represent the text to add into the attribute.

To go further

Video how to use serna are available at

• http://vimeo.com/groups/111908

Information about how to write a clean docbook article are available at

• https://hudson.jboss.org/hudson/job/PressGang_Documentation_Guide/lastSuccessfulBuild/arti-
fact/target/docbook/publish/en-US/html/sg-Structure_Guidelines.html

4. Publication

4.1. Rendering the document
Our document is now written in XML DocBook format but it is not so user friendly. We need then to
publish it into another format. publican is proposing various formats:

• html: html document split in pages with navigation buttons on top and bottom of each page

• html-single: html document in one page

• html-desktop: The same as html but with an additional table of content in the left

• pdf: the document is rendered into one pdf file

• epub: the document is rendered as an ebook

The following command will generate a pdf document

cd ~/Document/Publican_and_Serna publican build --lang en-US --format pdf

--lang parameter is mandatory and can be the language code or the keyword all.

--format parameter defines the output format and should be one of the format previously listed. It is
possible to generate multiple format output by separating the format by a comma.

The rendered document will be stored into ./en-US/tmp directory. When the document is ready to
be published the parameter --publish should be added to the command. It will store the document
into the directory ./publish/Lang/ProductName/ProdVersion/Fromat/DocumentName/
like for example: ./publish/en-US/Publication_Chain/1.0/pdf/Publican_and_Serna/.
These files will be automatically pushed to the web site if you are creating a documentation web site
as described into the next chapter.

http://search.cpan.org/~szabgab/Syntax-Highlight-Engine-Kate-0.06/lib/Syntax/Highlight/Engine/Kate.pm#PLUGINS
http://search.cpan.org/~szabgab/Syntax-Highlight-Engine-Kate-0.06/lib/Syntax/Highlight/Engine/Kate.pm#PLUGINS
http://vimeo.com/groups/111908
https://hudson.jboss.org/hudson/job/PressGang_Documentation_Guide/lastSuccessfulBuild/artifact/target/docbook/publish/en-US/html/sg-Structure_Guidelines.html
https://hudson.jboss.org/hudson/job/PressGang_Documentation_Guide/lastSuccessfulBuild/artifact/target/docbook/publish/en-US/html/sg-Structure_Guidelines.html

Managing a web site

15

4.2. Managing a web site
In this chapter, we will see how to create a website that can gather the documentation and give an ac-
cess to all the consecutive version of your document with a minimum of effort.

4.2.1. Creating the web page structure
Let's first create the web site using the publican command:

mkdir ~/Documentation/WebSite
cd ~/Documentation/WebSite
publican create_site --site_config website.cfg --db_file website.db --toc_path html

It create numerous files into the current directory:

• website.cfg gathering the configuration of the web site

• website.db gathering the information related to the document installed into the web site

• html/ gathering the pages of the web site and the articles and books published

It is possible to override the style of the web site by adding formating into the file html/
site_overrides.css. We will just create this file without modification to remove the possible error
into the html code generated:

touch html/site_overrides.css

Edit website.cfg and append following lines

def_lang: "en-US"
search: '<div/>'
manual_toc_update: 1

In this example we do disable the search capability and we defined to update table if content manual-
ly. This is useful if you want to modify the table of content but new book will not appear into the table of
content before you execute the command:

publican update_site --site_config ~/Documentation/WebSite/website.cfg

Be aware the this command will overwrite the toc.html files and will erase all the modification you
might do in the file previously.

4.2.2. Creating the home page
We have the structure of the web site ready, we need now the create the welcome page that will be
displayed to the users when they will reach the web site. The page is created as an article containing
only one page; the welcome page.

Execute the following command the create the home page article:

cd ~/Documentation/WebSite/
publican create --type Article --name Home_Page
cd Home_Page

Append in publican.cfg the type of article we are editing:

Admin and User Guide

16

web_type: home

Edit the file Home_Page.xml which is representing our welcome page:

<?xml version='1.0' encoding='UTF-8'?>
<!-- This document was created with Syntext Serna Free. --><!DOCTYPE article PUBLIC "-//
OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
<!ENTITY % BOOK_ENTITIES SYSTEM "Home_Page.ent">
%BOOK_ENTITIES;
]>
<article>
 <title>What's up Doc!</title>
 <mediaobject>
 <imageobject>
 <imagedata fileref="images/title_logo.svg" align="center"/>
 </imageobject>
 </mediaobject>
 <para>The web site is not a blog, it is not a standard web site but it is a web site
 gathering various documentation I wrote around Linux. I write these documentation to
 remember how to do the thing with Linux and while I doing technical researches.</para>
</article>

In this example, we just add an image and a little welcome text.

The page is now ready to be published into the website.

Execute the following command to do so:

publican build --publish --formats html-single --embedtoc --langs all
publican install_book --site_config ~/Documentation/website.cfg --lang all

--embedtoc tells publican to add the table of content of the web site in the left of the page

To add a logo into the top left corner, you have to create the following image: ~/Documenta-
tion/WebSite/Home_Page/en-US/images/web_logo.png and publish the modification of the
home page with the previous command.

4.2.3. Publication of an article
The publication of an article or a book in to the website is done with the commands:

cd ~/Documentation/Publican_and_Serna/
publican build --formats=html,html-single,txt,pdf,epub --langs=en-US --embedtoc --publish
publican install_book --site_config ~/Documentation/WebSite/website.cfg --lang en-US

Removing an article can be done by executing the following commands:

cd ~/Documentation/Publican_and_Serna/
publican remove_book --site_config ~/Documentation/WebSite/website.cfg --lang en-US

Here is how the web site will look like

Translation

17

In this screen shot, the files toc.html have been update to make the TXT and DOCBOOK output for-
mat available.

5. Translation
Our document and web site are now available in English. It could be nice to have them in other lan-
guages. We will see in this chapter how easy it is to translate the documentation we created with our
publication chain.

When the document is frozen you can prepare the document for translation. This preparation will con-
sist into the extraction of all the strings of the document into .pot file.

This is done with the command:

cd ~/Documentation/Publican_and_Serna
publican update_pot

Then you should choose the language you would like the add and execute the commands:

cd ~/Documentation/Publican_and_Serna
publican update_po --lang=fr-FR

In this example we decided to create the French version of our document. This command create the
.po file in the subdirectory fr-FR. The .po files are the file we will use for the translation.

The command publican with parameters update_pot and update_po have to be executed when
the original document has been modified. These commands will update the strings contained into the
translation file.

Admin and User Guide

18

A .po file contains all the strings of a defined file and their translation. If you open a .po file you will
see the following kind of lines:

#. Tag: para
#, no-c-format
msgid "<emphasis role=\"bold\">Publication chain</emphasis>"
msgstr "<emphasis role=\"bold\">Une chaine de publication</emphasis>"

The commented lines describe the tag and the status of the translation. msgid is the original string
and msgstr is the translation.

It is possible to edit directly this kind of file but it is existing application that could make the job easier.

poedit is this kind of application. Start the application with the menu Ubuntu → Development →
Poedit. After configuring the preferences of the application, you can open a .po file with the menu

File → open. It the example below we did open the file ~/Documentation/Publican_and_Serna/fr-FR/
Section-Recaction.po and we almost completed the translation:

The strings needing translation are highlighted in blue. The strings in yellow are flagged as fuzzy. This
means that the source string has been changed since the last translation and that a review of the
translation is required. This occurs when the .pot and .po file are update after a modification of the
original document.

The two bottom panels display the original string and allow the translator to translate the sentence.

To create a new language it is also required to translate the welcome page of the website using proce-
dure we just described.

The publication of a new translation is done like for a standard publication but with another language
code with the commands:

cd ~/Documentation/Publican_and_Serna/
publican build --formats=html,html-single,txt,pdf,epub --langs=fr-FR --embedtoc --publish

Revision History

19

publican install_book --site_config ~/Documentation/WebSite/website.cfg --lang en-FR

and, for the web site:

cd ~/Documentation/WebSite/Home_Page/
publican build --formats=html-single --langs=fr-FR --embedtoc --publish
publican install_book --site_config ~/Documentation/WebSite/website.cfg --lang en-FR

Then you will need to update the table of content with the command below after having saved the cur-
rent toc.html that will be overwritten:

publican update_site --site_config ~/Documentation/WebSite/website.cfg

This will conclude this article about installation and usage of a publication chain. To go further in the
usage of publican, refer to the official documentation available at:

• http://jfearn.fedorapeople.org/en-US/Publican/

A. Revision History
Revision 1.0
Ed1

Fri Sep 21 2012 Xavier Berger berger.xavier@gmail.com

Initial release of article

Note: Document improvement possibilities

• Branding customization

• svn to manage the document over the time

• Sigil to edit epub could be a complement and may be reviewed

• Add publication scripts to help publican management

http://jfearn.fedorapeople.org/en-US/Publican/
mailto:berger.xavier@gmail.com

20

	Admin and User Guide
	Table of Contents
	1. Introduction
	2. Installation
	2.1. Install publican and poedit
	2.2. Install serna-free

	3. Redaction
	3.1. Creating the article's skeleton
	3.2. Preparing the document structure
	3.3. Writing the article
	3.3.1. Using serna-free
	3.3.2. Docbook XML elements

	4. Publication
	4.1. Rendering the document
	4.2. Managing a web site
	4.2.1. Creating the web page structure
	4.2.2. Creating the home page
	4.2.3. Publication of an article

	5. Translation
	A. Revision History

